Example 3. Find symmetric equations for the line through $(2,-1,1)$ and perpendicular to both $\vec{u}=\langle 1,0,1\rangle$ and $\vec{v}=\langle-1,1,0\rangle$.

5 Equations of a line in 3D are not unique

- We can use any point on the line as the starting point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
- We can also use any vector parallel to the line as the direction vector $\vec{v}=\langle a, b, c\rangle$

Example 4. In Example 2, we considered a line that passes through the point $(2,4,3)$ and is parallel to the vector $\vec{i}-2 \vec{j}+4 \vec{k}$.
a. Using a different point, find another set of parametric equations for this line.
b. Using a different direction vector, find another set of parametric equations for this line.
a. $(3,2,7)$ is on the line \Rightarrow Another set of parametric eggs:

$$
x=3+t \quad y=2-2 t \quad z=7+4 t
$$

b. $-\vec{v}=\langle-1,2,-4\rangle$ is also parallel to the line
\Rightarrow Another set of parametric eqs:

$$
x=2-t \quad y=4+2 t \quad z=3-4 t
$$

